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Ansible for con�g management
Git for VCS
Tools managing network infrastructure and
services



and common work�ows...



and common work�ows...

deployment of new services



and common work�ows...

deployment of new services
provisioning of new devices/replacement of
faulty ones



and common work�ows...

deployment of new services
provisioning of new devices/replacement of
faulty ones
software upgrades
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...that

are well de�ned
consume time and human e�ort
although, can be scripted (eg. in runbooks)
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we need a tool that

senses  changes at the tools or the network
tr igger  ac t ions  based on them
can abstract ac t ions  into complex work�ows
interact with the network and our tools
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Stackstorm
solid base featureset
Lots of intergration with other tools (ST2 calls them
packs )
Support for "standard" word�ow language
(Openstack's Mis t ra l )
Native intergration with network infrastructure
(with NAPALM pack)
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 IF-This-Then-That automation

Sensors 
Inbound/Outbound intergration.
Receive/poll for events.

Triggers 
Result of an activated sensor.

Actions 
Outbound intergrations. A REST API
call, an ansible playbook or a custom
script.
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Stackstorm
 IF-This-Then-That automation

Rules 
Map triggers to actions. Filter
against criteria and pass trigger data
to the actions run

Work�ows 
A connected set of actions.

Packs 
Units of content deployment. 
Eq. to a module or a plugin.
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├── actions
│   ├── drain-leaf.meta.yaml
│   ├── evaluate_bgp_peers_status.py
│   ├── evaluate_bgp_peers_status.yaml
│   ├── junos-upgrade.meta.yaml
│   ├── undrain-leaf.meta.yaml
│   ├── upgrade-leaf.meta.yaml
│   └── workflows
│       ├── drain-leaf.yaml
│       ├── junos-upgrade.yaml
│       ├── mistral-leaf-ztp.yaml
│       ├── undrain-leaf.yaml
│       └── upgrade-leaf.yaml

The anatomy of a pack



|
├── icon.png
├── pack.yaml
├── requirements.txt
└── rules
    ├── drain_leaf.yaml
    ├── fabric_leaf_ztp.yaml
    ├── junos_upgrade.yaml
    ├── undrain_leaf.yaml
    ├── upgrade_fabric.yaml
    └── upgrade_leaf.yaml

The anatomy of a pack
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name: "upgrade_leaf"
pack: "grnet"
description: "Full workflow of the JunOS upgrade of a QFX5100"
enabled: true
trigger:
  type: "core.st2.webhook"
  parameters:
    url: "upgrade_leaf"
criteria: {}
action:
  ref: "grnet.upgrade-leaf"
  parameters:
    upgrade_data: "{{ trigger.body }}"

r u l e s / upg r ade - l e a f . y am l





netbox_device:
   action: netbox.get.dcim.devices
   input:
     name: "{{ _.dev_name }}"
   publish:
     dev_status: "{{ task('netbox_device')..status.label }}"
     dev_role: "{{task('netbox_device')..device_role.slug }}"
   on-success:
     - fail: "{{ _.dev_status != 'Active' 
                        or _.dev_role != 'dc-fabric-leaf' }}"
     - bgp_status
     - admin_down_downlinks

a c t i on s /wo r k�ows /upg rade - l e a f . y am l





admin_down_downlinks:
# Load the configuration that drains the switch
  action: napalm.loadconfig
  input:
    config_file: "/srv/st2/static/drain_leaf_config.set"
    hostname: "{{ _.dev_name }}"
    driver: "junos"

a c t i on s /wo r k�ows /d r a i n - l e a f . y am l





qfx5100_upgrade:
  action: ansible.playbook
  input:
    playbook: "/srv/ansible/playbooks/junos-install.yaml"
    limit: "{{ _.dev_name }}"
    start_at_task: "Execute a basic Junos software upgrade"
    extra_vars:
      - user: "{{}}"
      - password: "{{ st2kv.system.st2_devices_pass 
                        | decrypt_kv }}"
      - force_host: true
      - remote_pkg: "{{ _.junos_url }}"
  on-success:
    - ping_host

a c t i on s /wo r k�ows / j unos - upg r ade . y am l





bgp_status:
  # Get the BGP status of the device leaf
  action: napalm.get_bgp_neighbors
  input:
    hostname: "{{ _.dev_name }}"
    driver: "junos"
    credentials: "stackstorm"
  on-success:
    - evaluate_bgp_output

a c t i on s /wo r k�ows /und ra i n - l e a f . y am l



evaluate_bgp_status:
  action: grnet.evaluate_bgp_peers_status
  input:
    bgp_state: "{{ _.bgp_after_status }}"
  on-success:
    - restore_port_state

a c t i on s /wo r k�ows /und ra i n - l e a f . y am l





ansible_create_config:
  action: ansible.playbook
  input:
    playbook: "create-config.yml"
  on-success:
    - restore_port_state
 
restore_port_state:
  join: all
  action: ansible.playbook
  input:
    playbook: "junos-commit-and-confirm.yml"

a c t i on s /wo r k�ows /und ra i n - l e a f . y am l



some of our use cases
Datacenter switches mass upgrade (done for leaf switches)
Zero Touch Provisioning (done)
Network Ops tasks part of BMS autoprovision (developing)
Auto-deployment of our Ansible repo changes (brainstorming)
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to sum up
runbooks all the way
automate common tasks
trust automation for more critical tasks
can't automate the human



Questions?


