
Event-driven
automation and
orchestration
@GRNET
with Stackstorm

Lefteris Poulakakis
lepou@noc.grnet.gr

what we have

what we have

~50 carrier routers

what we have

~50 carrier routers
~150 access switches

what we have

~50 carrier routers
~150 access switches
~60 datacenter switches

what we have

what we have

Ansible for con�g management

what we have

Ansible for con�g management
Git for VCS

what we have

Ansible for con�g management
Git for VCS
Tools managing network infrastructure and
services

and common work�ows...

and common work�ows...

deployment of new services

and common work�ows...

deployment of new services
provisioning of new devices/replacement of
faulty ones

and common work�ows...

deployment of new services
provisioning of new devices/replacement of
faulty ones
software upgrades

...that

...that

are well de�ned

...that

are well de�ned
consume time and human e�ort

...that

are well de�ned
consume time and human e�ort
although, can be scripted (eg. in runbooks)

some of our use cases

some of our use cases
Datacenter switches mass upgrade

some of our use cases
Datacenter switches mass upgrade
Zero Touch Provisioning

some of our use cases
Datacenter switches mass upgrade
Zero Touch Provisioning
Auto-deployment of our Ansible repo changes

some of our use cases
Datacenter switches mass upgrade
Zero Touch Provisioning
Auto-deployment of our Ansible repo changes
Network Ops tasks part of BMS autoprovision

So. . .

So. . .

. . . l e t ' s automate

we need a tool that

we need a tool that

senses changes at the tools or the network

we need a tool that

senses changes at the tools or the network
tr igger ac t ions based on them

we need a tool that

senses changes at the tools or the network
tr igger ac t ions based on them
can abstract ac t ions into complex work�ows

we need a tool that

senses changes at the tools or the network
tr igger ac t ions based on them
can abstract ac t ions into complex work�ows
interact with the network and our tools

Stackstorm

Stackstorm
solid base featureset

Stackstorm
solid base featureset
Lots of intergration with other tools (ST2 calls them
packs)

Stackstorm
solid base featureset
Lots of intergration with other tools (ST2 calls them
packs)
Support for "standard" word�ow language
(Openstack's Mis t ra l)

Stackstorm
solid base featureset
Lots of intergration with other tools (ST2 calls them
packs)
Support for "standard" word�ow language
(Openstack's Mis t ra l)
Native intergration with network infrastructure
(with NAPALM pack)

Stackstorm
 IF-This-Then-That automation

Stackstorm
 IF-This-Then-That automation

Sensors
Inbound/Outbound intergration.
Receive/poll for events.

Stackstorm
 IF-This-Then-That automation

Sensors
Inbound/Outbound intergration.
Receive/poll for events.

Triggers
Result of an activated sensor.

Stackstorm
 IF-This-Then-That automation

Sensors
Inbound/Outbound intergration.
Receive/poll for events.

Triggers
Result of an activated sensor.

Actions
Outbound intergrations. A REST API
call, an ansible playbook or a custom
script.

Stackstorm
 IF-This-Then-That automation

Rules
Map triggers to actions. Filter
against criteria and pass trigger data
to the actions run

Stackstorm
 IF-This-Then-That automation

Rules
Map triggers to actions. Filter
against criteria and pass trigger data
to the actions run

Work�ows
A connected set of actions.

Stackstorm
 IF-This-Then-That automation

Rules
Map triggers to actions. Filter
against criteria and pass trigger data
to the actions run

Work�ows
A connected set of actions.

Packs
Units of content deployment.
Eq. to a module or a plugin.

Architecture

├── actions
│ ├── drain-leaf.meta.yaml
│ ├── evaluate_bgp_peers_status.py
│ ├── evaluate_bgp_peers_status.yaml
│ ├── junos-upgrade.meta.yaml
│ ├── undrain-leaf.meta.yaml
│ ├── upgrade-leaf.meta.yaml
│ └── workflows
│ ├── drain-leaf.yaml
│ ├── junos-upgrade.yaml
│ ├── mistral-leaf-ztp.yaml
│ ├── undrain-leaf.yaml
│ └── upgrade-leaf.yaml

The anatomy of a pack

|
├── icon.png
├── pack.yaml
├── requirements.txt
└── rules
 ├── drain_leaf.yaml
 ├── fabric_leaf_ztp.yaml
 ├── junos_upgrade.yaml
 ├── undrain_leaf.yaml
 ├── upgrade_fabric.yaml
 └── upgrade_leaf.yaml

The anatomy of a pack

DC switches mass upgrade
Our DCs arch i tec ture

DC switches mass upgrade
Our DCs arch i tec ture

name: "upgrade_leaf"
pack: "grnet"
description: "Full workflow of the JunOS upgrade of a QFX5100"
enabled: true
trigger:
 type: "core.st2.webhook"
 parameters:
 url: "upgrade_leaf"
criteria: {}
action:
 ref: "grnet.upgrade-leaf"
 parameters:
 upgrade_data: "{{ trigger.body }}"

r u l e s / upg r ade - l e a f . y am l

netbox_device:
 action: netbox.get.dcim.devices
 input:
 name: "{{ _.dev_name }}"
 publish:
 dev_status: "{{ task('netbox_device')..status.label }}"
 dev_role: "{{task('netbox_device')..device_role.slug }}"
 on-success:
 - fail: "{{ _.dev_status != 'Active'
 or _.dev_role != 'dc-fabric-leaf' }}"
 - bgp_status
 - admin_down_downlinks

a c t i on s /wo r k�ows /upg rade - l e a f . y am l

admin_down_downlinks:
Load the configuration that drains the switch
 action: napalm.loadconfig
 input:
 config_file: "/srv/st2/static/drain_leaf_config.set"
 hostname: "{{ _.dev_name }}"
 driver: "junos"

a c t i on s /wo r k�ows /d r a i n - l e a f . y am l

qfx5100_upgrade:
 action: ansible.playbook
 input:
 playbook: "/srv/ansible/playbooks/junos-install.yaml"
 limit: "{{ _.dev_name }}"
 start_at_task: "Execute a basic Junos software upgrade"
 extra_vars:
 - user: "{{}}"
 - password: "{{ st2kv.system.st2_devices_pass
 | decrypt_kv }}"
 - force_host: true
 - remote_pkg: "{{ _.junos_url }}"
 on-success:
 - ping_host

a c t i on s /wo r k�ows / j unos - upg r ade . y am l

bgp_status:
 # Get the BGP status of the device leaf
 action: napalm.get_bgp_neighbors
 input:
 hostname: "{{ _.dev_name }}"
 driver: "junos"
 credentials: "stackstorm"
 on-success:
 - evaluate_bgp_output

a c t i on s /wo r k�ows /und ra i n - l e a f . y am l

evaluate_bgp_status:
 action: grnet.evaluate_bgp_peers_status
 input:
 bgp_state: "{{ _.bgp_after_status }}"
 on-success:
 - restore_port_state

a c t i on s /wo r k�ows /und ra i n - l e a f . y am l

ansible_create_config:
 action: ansible.playbook
 input:
 playbook: "create-config.yml"
 on-success:
 - restore_port_state

restore_port_state:
 join: all
 action: ansible.playbook
 input:
 playbook: "junos-commit-and-confirm.yml"

a c t i on s /wo r k�ows /und ra i n - l e a f . y am l

some of our use cases
Datacenter switches mass upgrade (done for leaf switches)
Zero Touch Provisioning (done)
Network Ops tasks part of BMS autoprovision (developing)
Auto-deployment of our Ansible repo changes (brainstorming)

to sum up

to sum up
runbooks all the way

to sum up
runbooks all the way
automate common tasks

to sum up
runbooks all the way
automate common tasks
trust automation for more critical tasks

to sum up
runbooks all the way
automate common tasks
trust automation for more critical tasks
can't automate the human

Questions?

