POINTNE

Al thoughts

Athanassios Liakopoulos Global Practice for Network, Workplace & Edge

GRNOG #8

Who am I?

- I am not an AI expert!
- Just sharing my thoughts
- Not assigned to any AI role in my organization

- Leading solutions for Enterprise IoT

Outline

- Al use cases
- Ethics
- Machine Learning
 - Basic terms, phases, reality, etc
- Reinforcement learning Lets play Atari!
- CNN Where is the cat?
- ML in networking / PdM

"The illiterate of the 21st century will not be those who cannot read and write, but those who cannot learn, unlearn, and relearn."

Alvin Toffler

Backwards Brain Bicycle

Knowledge vs Understanding

https://ed.ted.com/featured/bf2mRAfC

Al examples

Al use cases

- Deep Blue vs Garry Kasparov (1996-1997)
- Autonomous cars (Tesla Autopilot 2014)
- Google DeepMind plays Atari Breakout (2015)
- AlphaGo (2016)
- Al vs Doctors
 - Skin cancer (2017), Cardiography (2017) , MRI (2019)
- "My personal IoT experience" (2017)
- Uber accident (2018)

Ethics challenges

- Self-driving Uber taxi accident
- Accept credit based on <u>customer</u> (vs financial) profile
- Admission to the university based on <u>non-academic</u> (vs academic) profile
- Get private insurance based on your gene profile
- Get employed based on ...
- Fake news Stop Misinformation and False News
 - Responsibility fall in Intenet giants, e.g. Facebook, etc

Big Data – a tool for inclusion or exclusion?

Areas of concern

- Protected classification
 - Race, ethnicity, national origin, gender, religion, etc
- Biased data
 - Data input is biased
 - Use of irrelevant data (e.g. zip code)
- Tension between Individual Rights and Organisational Rights
 - The AI algorithm is an intellectual property Need to be protected
- Negligence laws
 - Who's fault is the Uber taxi accident?
 - Al programmer? Car provider? Service provider? Taxi driver? Other?
- Customer analytics

POINTNEX

HPE

- Consumer Reporting Agencies (CRAs)
 - Implement reasonable procedures to insure a maximum possible accuracy of consumer reports
 - Provide consumers with access to their information
 - Provide consumers with the ability to correct errors
- Unfair and deceptive practices can arise when companies are maintaining large amounts of sensitive data about individuals and are not securing it from misuse

- General data protection regulation (GDPR)
 - Privacy is a fundamental right for people in Europe
- AI & GDPR
 - Big data analytics need to be fair
 - Permission to process
 - Purpose limitation
 - Holding on to data
 - Accuracy
 - Individual rights and access to data
 - Security measures and risks
 - Accountability
 - Controllers and processes

Basic terms

Artificial intelligence

Predict and anticipate possible future events

Artificial intelligence is a technology that appears to emulate human performance typically by learning, coming to its own conclusions, appearing to understand complex content, and engaging in natural humanlike actions.

Let's get grounded...what is AI?

What makes a machine intelligent?

Why should you be interested in AI / advanced analytics?

Our customers want AI and advanced analytics....

Al and advanced analytics is one of the **top 3 priorities** for CIOs

Al and advanced analytics infrastructure could constitute

15-20% of the market by 2021¹

....but face many challenges

Use cases

New roles, skill gaps Culture and change Data preparation Legacy Infrastructure

Data explosion and need for advanced analytics

* Driver assistance systems only

Taking a holistic view to artificial intelligence

hpe POINTNEXT

Key questions remain

POINTNEXT

Machine Learning

ML Analogy

How long am I going to live?

- Do I have a balanced diet?
- Do I have the right BMI?
- Do I exercise?
- Did my parents lived beyond 90?
- Do I use seat belt when I drive?
- Do I know to swim?
- Do I smoke?
- Do I take drugs?
- Do I climb to Everest?
- Am I F1 driver?
- Do I travel to Syria?

ML basics

Supervised Machine Learning

Unsupervised Machine Learning

ML basics

Classification

Regression

Overfitting

Underfitted

Good Fit/Robust

Overfitted

Overfitting & Model complexity

Data (example)

_	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp	Clicked on Ad	LABEL
(68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11	0	L1
	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02	0	L2
:	2 69.47	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	2016-03-13 20:35:42	0	L2
;	3 74.15	29	54806.18	245.89	Triple-buffered reciprocal time- frame	West Terrifurt	1	Italy	2016-01-10 02:31:19	0	L1
4	4 68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18	0	L3
!	5 59.99	23	59761.56	226.74	Sharable client-driven software	Jamieberg	1	Norway	2016-05-19 14:30:17	0	L1
(88.91	33	53852.85	208.36	Enhanced dedicated support	Brandonstad	0	Myanmar	2016-01-28 20:59:32	0	L1
7	66.00	48	24593.33	131.76	Reactive local challenge	Port Jefferybury	1	Australia	2016-03-07 01:40:15	1	L3
1	3 74.53	30	68862.00	221.51	Configurable coherent function	West Colin	1	Grenada	2016-04-18 09:33:42	0	L2
1	69.88	20	55642.32	183.82	Mandatory homogeneous architecture	Ramirezton	1	Ghana	2016-07-11 01:42:51	0	L2

AI Algorithms

Naive Bayes

ML phases

- Data preparation,
- Feature engineering
- Curse of dimensionality
- Models are two lines

It takes more than having tomatoes to build a Greek salad

Neural Networks

Neural Network

Backpropagation

Reinforcement learning

Reinforcement Learning

Reinforcement Learning

Q-learning: Learn function $Q: \mathcal{X} \times \mathcal{A} \to \mathbb{R}$ Require: Sates $\mathcal{X} = \{1, \ldots, n_x\}$ Actions $\mathcal{A} = \{1, \dots, n_a\}, \qquad A : \mathcal{X} \Rightarrow \mathcal{A}$ Reward function $R: \mathcal{X} \times \mathcal{A} \to \mathbb{R}$ Black-box (probabilistic) transition function $T: \mathcal{X} \times \mathcal{A} \to \mathcal{X}$ Learning rate $\alpha \in [0, 1]$, typically $\alpha = 0.1$ Discounting factor $\gamma \in [0, 1]$ **procedure** QLEARNING($\mathcal{X}, A, R, T, \alpha, \gamma$) Initialize $Q: \mathcal{X} \times \mathcal{A} \to \mathbb{R}$ arbitrarily while Q is not converged do Start in state $s \in \mathcal{X}$ while s is not terminal do Calculate π according to Q and exploration strategy (e.g. $\pi(x) \leftarrow$ $\operatorname{arg\,max}_{a} Q(x, a)$ $a \leftarrow \pi(s)$ $r \leftarrow R(s, a)$ \triangleright Receive the reward $r \leftarrow R(s, a) \qquad \qquad \triangleright \text{ Receive t} \\ s' \leftarrow T(s, a) \qquad \qquad \triangleright \text{ Receive the} \\ Q(s', a) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha \cdot (r + \gamma \cdot \max_{a'} Q(s', a')) \\ \end{cases}$ ▷ Receive the new state $\operatorname{return} Q$

Let play Atari

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Convolutional Neural Networks

CNN

- Visual recognition problems
 - Face detection, object detection, action classification, ... "fun"!
 - Image classification subproblems: view point variation, illumination, background clutter, deformation, occlusion, etc
- Hello World Image recognition
- Filters examples (eyes)

Our data

Face detection

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

Input image

2012 \dense 2048 2048 192 192 128 48 128 27 Krizhevsky et al. 13 224 dense densé 13 1000 128 Max 192 192 pooling 2048 2048 Max 224 Max 128 Stride pooling pooling # of transistors # of pixels used in training **GPUs** 10⁹ 10¹⁴ IM GENET Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

ML in networking (example) IntroSpect User and Entity Behavior Analytics (UEBA)

HPE POINTNEXT https://www.arubanetworks.com/products/security/ueba/

Peer Baseline Anomaly

Al in production HPE Prescriptive Maintenance

HPE Digital Prescriptive Maintenance Use Case

- Prescribes best maintenance decisions and automates actions
- Open end-to-end solution framework including data ingestion, visualization analysis, prediction and automation
- Integrates with various structured and unstructured sources at the Edge and Hybrid Cloud
- Works with leading maintenance technology partners (Dataiku, PTC/thingsworx or GE/Predix)
- Delivered through a workshop, POV, implementation services

Last remarks

- Fascinating world!
- Don't start if you are afraid maths
- Learn python (?)
- It is more important to understand and analyse the data rather than to write code
- AI ethics are important
- AI is already here!

Further reading

- Deep learning & machine learning solutions
 - https://www.hpe.com/us/en/solutions/hpc-high-performance-computing/deep-learning.html
- Enterprise artificial intelligence
 - <u>https://www.hpe.com/us/en/solutions/artificial-intelligence.html</u>
- How to prepare your business for AI
 - https://www.hpe.com/us/en/insights/articles/how-to-prepare-your-business-for-ai-1711.html

HPE is making AI enterprise-grade

Using AI to perfect race strategy

HPE

POINTNEXT

Converging AI, IT and OT to boost output and quality

Accelerating Alzheimer's research 100x using in-memory analytics

54

Thank you

Athanassios.Liakopoulos@hpe.com

Hewlett Packard Enterprise