
Towards an IP fabric topology
@ Skroutz

...an early production prototype

Alexandros Afentoulis, Stefanos Boglou
June 12th 2019, GRNOG 8, Tower of Books, SNFCC

What is `skroutz` ?
Price search/aggregator for consumer products

3440 affiliated shops

750.000 unique visitors per day

10.000.000 page views per day

About 400mbit/s average front-end traffic (HTTPS)

Existing network stack (Main Site)

● 2 core/edge IP routers running Debian (see apoikos’ pres at GRNOG 2)
● A virtual-chassis, 4 Juniper EX4200 stacked

○ SPOF (almost), control plane shared among line cards
○ Stiff to maintain/upgrade
○ Limited scaling/expanding capabilities
○ Vendor lock-in

● Buffers issues on switches, potentially leading to packet drops
● Stack members ports already full
● Increased need for east-west traffic capacity

Next generation requirements
● Focus on the switches stack
● Maintainable infrastructure that scales
● Increase fault-tolerance

○ Reduce failure-domains, minimize broadcast domains
○ Fast convergence in case of failure

● Avoid vendor lock-in and proprietary tech limitations
● High link utilization
● Avoid overlay network complexity if possible
● Linux hosts integration

IP Fabric!
● Hot trend/topic for data-center networking
● Promises for scalability and flexibility
● A couple of “known” implementations out there
● RFCs backing specific choices, e.g. RFC7938 for BGP
● Lots of choices regarding vendors, protocols, topologies

How does it fit
● Limits the scope of failure domains

○ Broadcast domains with up to 2 devices
○ Each device has its own control plane (eBGP)

● eBGP features
○ Standards-compliant across vendors
○ Fast convergence on failures (with tuned timers and BFD)
○ Traffic engineering, eg drain device traffic, Load-Balance Layer7 load-balancers
○ ECMP (Equal Cost MultiPath) → Load-Balance links (replaces LACP)

● Scalable architecture
● Debian hosts can join IP Fabric as an additional tier

Our implementation ingredients
● Leaf-spine topology

○ Two leaf switches per rack
○ Two spine switches
○ Juniper QFX5100{48S,24Q}

● IP data plane
● eBGP control plane
● AS and IP numbering scheme
● Ansible and Puppet
● Bird routing daemon on Debian

First Iteration
● Gains expected from first iteration:

○ Production level implementation
○ Prepare Ansible and Puppet to ease/automate deployment
○ Evaluate better monitoring solutions to munin/SNMP
○ Familiarize our team with basic IP fabric concepts
○ Alleviate a big load from the current switch stack
○ Simulate failures on a non-critical production network

● Hardware:
○ 2 leaf switches (no spines at this point)
○ 8 (production) Debian ganeti nodes

● VMs disk replication & memory transfer over IP fabric

AS & IP numbering
● Algorithm/scheme to predictably devise AS numbers and IP ranges
● Νο (need for) coordination between Ansible and Puppet
● Coupling configuration for switches & servers
● Pre-configure all eBPG peerings on switches’ side

● Hijack CGNAT space for IP Fabric peerings, 100.64.0.0/10
● 32bit private AS numbers, 42000xxxyy

Numbering walkthrough
● For each leaf switch we assign:

○ An 3-digit integer xxx encoded in hostname, eg. met-sw-p5b-001
○ A 100.64.xxx.0/24 IP range for peerings, e.g 100.64.1.0/24
○ A hundred private AS numbers, like AS42000xxxyy, e.g. AS42000001{00-99}

● ASN distribution
○ Leaf switch gets the last ASN, peers the rest based on peering iface
○ e. g. switch local-as 4200000199, xe-0/0/7 peer-as 4200000107

● IPs distribution
○ a /31 for each p2p link, switch gets the even, peer gets the odd
○ e.g. xe-0/0/14: 100.64.1.28/31, peer IP 100.64.1.29/31, peer AS 4200000114

Ansible on switches
● Pre-configure as much as possible
● Juniper’s ansible role
● Home-grown roles for IP fabric switches
● Custom lookup plugin implementing the addressing algorithm
● Configure:

○ Virtual-router routing instance with eBGP protocol
○ Separate BGP group for servers (neighbor ASNs, IPs, import/export, BFD)
○ import/export policies filtering network prefixes
○ Analytics, push interfaces/queues stats for graphing

Puppet
● Fetch switches’ hostname and port from LLDP (layer2!)

○ LLDP => layer2 protocol, no configuration needed

● Custom puppet function transcodes LLDP facts to IPs and ASNs
● Configures /etc/network/interfaces (debian-based only)

○ Custom `iface` resource for managing network interfaces
○ “Peering” interfaces with switches
○ Dummy interface with /32 (/128) addresses to announce

● Configures eBGP on bird
○ Bird is our eBGP/routing daemon of choice
○ Control plane that listens and announces layer3 IPs to and from IPFabric

Routing on Debian hosts
bird> show route for 10.202.20.93 all
10.202.20.93/32 via 100.64.0.28 on eth5
[met_sw_p5a_000 11:44:41] * (100) [AS4210000003i]
 Type: BGP unicast univ
 BGP.origin: IGP
 BGP.as_path: 4200000099 4200000004 4210000003
 BGP.next_hop: 100.64.0.28
 BGP.local_pref: 100
 via 100.64.1.28 on eth4
[met_sw_p5b_001 11:44:41] (100) [AS4210000003i]
 Type: BGP unicast univ
 BGP.origin: IGP
 BGP.as_path: 4200000199 4200000104 4210000003
 BGP.next_hop: 100.64.1.28
 BGP.local_pref: 100

root@hp1.gnt-:~# ip r
default via 185.6.77.33 dev bond0 onlink
10.42.2.0/24 via 10.202.20.1 dev replication
10.202.20.0/24 dev … src 10.202.20.91
10.202.20.92 proto bird src 10.202.20.91
 nexthop via 100.64.0.0 dev eth5 weight 1
 nexthop via 100.64.1.0 dev eth6 weight 1
10.202.20.93 proto bird src 10.202.20.91
 nexthop via 100.64.0.0 dev eth5 weight 1
 nexthop via 100.64.1.0 dev eth6 weight 1
10.202.20.94 proto bird src 10.202.20.91
 nexthop via 100.64.0.0 dev eth5 weight 1
 nexthop via 100.64.1.0 dev eth6 weight 1
10.202.20.95 proto bird src 10.202.20.91
 nexthop via 100.64.0.0 dev eth5 weight 1
 nexthop via 100.64.1.0 dev eth6 weight 1

● Switches
○ use Juniper Analytics for graphing
○ Junos push JSON to Logstash, 5 seconds interval
○ Monitor buffer statistics with millisecond accuracy for detecting micro-bursts
○ Use grafana as a graphing tool

● Debian hosts
○ Log route changes messages via route netlink
○ Check for multipath routes existence

Monitoring

Next steps/challenges
● Move more bare metal hosts traffic (services) over the fabric
● Expand the fabric: introduce spines, add more leafs
● Move virtual machines traffic over the fabric, i.e. routing on the host
● Establish connectivity to the rest of the world (distribute default gateways?)
● Improve visibility (monitoring) over the fabric
● Address the bootstrapping step (DHCP or ?)

Thanks!

